Educational Revolution : Shaping the Future of Learning with Artificial Intelligence Tutorial

The transformative impact of artificial intelligence (AI) in education is explored in this training video, highlighting innovative methods for personalizing educational content. AI is proving essential in tailoring learning strategies to each student's unique needs, harnessing a diverse range of data, such as test scores and online interactions, to establish distinctive learning profiles and deliver bespoke educational experiences. Forward-thinking platforms such as Knewton, DreamBox, and Smart Sparrow are presented as pioneering models in the integration of AI to sculpt dynamic and responsive learning pathways. The AI implementation process, from the careful collection of student data to the feeding of AI algorithms, while prioritizing data security and privacy, is dissected. The story closes by anticipating a future educational era where AI and pedagogy intertwine to deploy a personalized, technologically-enriched learning experience, sketching out a new page in the educational field.

  • 6:39
  • 1579 views

Objectifs :

This training aims to explore how artificial intelligence (AI) is transforming the creation of educational content to meet the unique needs of each student. It emphasizes the importance of personalization in education, the role of AI in analyzing student data, and the benefits of adaptive learning platforms.


Chapitres :

  1. Introduction to AI in Education
    In this training, we will discover how artificial intelligence is revolutionizing the creation of educational content to meet the specific needs of each student. Personalization in education is not just a trend; it is a necessity. By tailoring content to each student, we facilitate understanding, engagement, and strengthen motivation.
  2. The Role of AI in Personalization
    Artificial intelligence, with its ability to analyze vast amounts of data, offers a unique opportunity to tailor educational methods to each individual. In the educational context, AI relies on a wide range of student data to inform and guide its decision-making process. This data can include: - Test performances - Scores - Response speed - Recurring errors By studying trends over time, AI can detect if a student is progressing, stagnating, or encountering difficulties in certain subjects or concepts.
  3. Utilizing Feedback for Improvement
    Feedback, whether directly given by students or their instructors, is a gold mine of information. AI can use this feedback to understand stumbling points, areas of interest, or even students' preferred learning styles. Online interactions, such as clicks, time spent on a page, and resources downloaded, provide AI with a clear picture of a student's engagement and areas that hold their attention the most.
  4. Creating Learning Profiles
    From this rich mine of information, AI establishes learning profiles. For instance, if a student shows strong aptitude in mathematics but struggles in history, AI will detect it. It could then recommend additional resources in history to bridge this gap while providing more advanced resources in mathematics to continue stimulating the student's interest in that area. Moreover, if AI detects that the student is particularly engaged by videos rather than texts, it could prioritize video resources in its recommendations.
  5. Dynamic Learning Platforms
    Newton is a cutting-edge platform that integrates AI to revolutionize the educational experience. Its main strength is its ability to dynamically adjust students' learning paths. Rather than offering a rigid curriculum, Newton continuously assesses students' performance, behavior, and interactions with content. For example, if a student excels in one area but struggles in another, the platform reorganizes its modules to reinforce weak areas while continuing to stimulate strong areas.
  6. Adaptive Learning with Dreambox
    Dreambox is not just another math learning platform; it is an adaptive experience that reinvents itself with each interaction. Designed around sophisticated AI, it responds in real-time to students' actions. If a student quickly masters a concept, Dreambox recognizes it and challenges them with more complex problems. Conversely, if a student appears to struggle, the platform offers additional resources and support to clarify and reinforce understanding.
  7. Interactive Learning with Smart Sparrow
    Smart Sparrow is designed around the idea that learning is not a one-way street; it is not just about absorbing content but interacting with it. Using an AI-based approach, the platform assesses a student's progress and level of engagement. For example, if a student spends a lot of time on a module without progressing, Smart Sparrow can determine that they are stuck or disengaged and adjust the content accordingly.
  8. Data Collection and Privacy
    The use of AI for personalized learning begins with a crucial step: collecting data on the student. This includes tests and assessments, feedback after lessons, and real-time data from online interactions. Teachers also provide valuable data through classroom observations. Once all this data is collected, it is carefully organized and prepared for analysis. It is essential to ensure the privacy and security of student data throughout this process.
  9. The Future of AI in Education
    AI in the service of education is above all an alliance between technology and humanity to offer the best to each student. Thanks to AI, personalization reaches a new level, anticipating students' needs and offering solutions in real-time. However, it heavily depends on the quality of the data and still requires human intervention to ensure excellence. With AI, we are at the dawn of a new era in education, combining technology and pedagogy to offer an unmatched learning experience.

FAQ :

What is the role of AI in personalized education?

AI plays a crucial role in personalized education by analyzing vast amounts of student data to tailor educational content and methods to individual needs, enhancing understanding and engagement.

How does AI create learning profiles for students?

AI creates learning profiles by analyzing data such as test performances, feedback, and online interactions to identify a student's strengths, weaknesses, and preferred learning styles.

What are adaptive learning platforms?

Adaptive learning platforms are educational technologies that adjust the content and learning paths based on individual student performance and engagement, providing a personalized learning experience.

How can teachers benefit from AI in education?

Teachers can benefit from AI through detailed dashboards that provide insights into student performance, helping them identify areas where students excel or need additional support.

What is predictive analytics in education?

Predictive analytics in education involves using historical data to anticipate students' future needs and performance, allowing for proactive adjustments in teaching strategies.

What measures are taken to ensure student data privacy?

Ensuring student data privacy involves careful organization and preparation of data, continuous updates to AI tools, and prioritizing security throughout the data collection and analysis process.


Quelques cas d'usages :

Personalized Learning Plans

Educators can use AI to develop personalized learning plans for students, identifying specific areas where they need support and adapting resources accordingly to enhance their learning experience.

Real-Time Feedback for Students

AI platforms can provide real-time feedback to students based on their interactions, helping them understand their progress and areas needing improvement, thus fostering a more engaging learning environment.

Data-Driven Instructional Strategies

Teachers can leverage AI analytics to inform their instructional strategies, using data to adjust lesson plans and teaching methods to better meet the diverse needs of their students.

Enhanced Student Engagement

By analyzing engagement metrics, AI can help educators identify which content formats resonate most with students, allowing for the creation of more engaging and effective learning materials.

Collaborative Learning Environments

AI can facilitate collaborative learning by providing insights into group dynamics and individual contributions, enabling teachers to foster teamwork and peer learning effectively.


Glossaire :

Artificial Intelligence (AI)

A branch of computer science that aims to create systems capable of performing tasks that typically require human intelligence, such as learning, reasoning, and problem-solving.

Personalization in Education

The process of tailoring educational content and methods to meet the individual needs, preferences, and learning styles of each student.

Learning Profiles

Detailed representations of a student's strengths, weaknesses, and preferences based on data analysis, which inform personalized educational strategies.

Predictive Analytics

The use of statistical algorithms and machine learning techniques to identify the likelihood of future outcomes based on historical data.

Engagement

The level of interest, motivation, and involvement a student shows towards their learning activities.

Feedback

Information provided by students or instructors regarding performance, which can be used to identify areas of difficulty or interest.

Adaptive Learning Platforms

Educational technologies that adjust the content and learning paths based on the individual performance and engagement of students.

Smart Sparrow

An adaptive learning platform that uses AI to assess student progress and engagement, adjusting content to enhance learning experiences.

Dreambox

An adaptive math learning platform that personalizes the learning experience in real-time based on student interactions.

Newton

An educational platform that integrates AI to dynamically adjust learning paths based on student performance and behavior.

00:00:04
In this training, we will discover how
00:00:07
artificial intelligence is revolutionizing
00:00:09
the creation of educational content to
00:00:11
meet the specific needs of each student.
00:00:14
Personalization in education is
00:00:15
not just a trend, it's a necessity.
00:00:18
By tailoring content to each student,
00:00:21
we facilitate understanding,
00:00:23
engagement, and strengthen motivation.
00:00:25
Artificial intelligence,
00:00:26
with its ability to analyze
00:00:28
vast amounts of data,
00:00:30
offers a unique opportunity to tailor
00:00:32
educational methods to each individual.
00:00:35
In the educational context,
00:00:37
AI relies on a wide range of student data to
00:00:40
inform and guide its decision making process.
00:00:43
This data can include test performances.
00:00:48
Scores, response speed and recurring
00:00:50
errors are analyzed in depth
00:00:52
by studying trends over time.
00:00:54
AI can detect if a student is progressing,
00:00:56
stagnating or encountering
00:00:58
difficulties in certain
00:00:59
subjects or concepts. Feedbacks
00:01:04
feedback, whether directly given
00:01:05
by students or their instructors,
00:01:07
is a gold mine of information.
00:01:09
AI can use these feedbacks to
00:01:11
understand stumbling points, areas
00:01:13
of interest, or even students
00:01:15
preferred learning styles.
00:01:17
Online interactions, clicks,
00:01:21
time spent on a page,
00:01:22
downloaded, resources,
00:01:23
videos watched and for how long
00:01:25
provide AI with a clear picture
00:01:28
of a students engagement and areas
00:01:30
that hold their attention the most.
00:01:32
From this rich mine of information,
00:01:34
AI establishes learning profiles.
00:01:36
If a student shows strong aptitude in
00:01:39
mathematics but struggles in history,
00:01:41
AI will detect it.
00:01:42
It could then recommend additional
00:01:44
resources in history to bridge this gap,
00:01:46
while providing more advanced resources
00:01:48
in mathematics to continue stimulating
00:01:50
the student's interest in that area.
00:01:53
Moreover, if AI detects that the
00:01:56
student is particularly engaged
00:01:57
by videos rather than texts, it
00:01:59
could prioritize video resources
00:02:02
in its recommendations.
00:02:04
Thus, AI not only identifies
00:02:06
areas of strength and weakness, but also
00:02:09
adapts the content format according
00:02:10
to the students preferences.
00:02:12
Ultimately, thanks to this detailed analysis,
00:02:15
artificial Intelligence is able
00:02:17
to create or suggest educational
00:02:19
resources that are not only tailored
00:02:21
to the academic level of the student,
00:02:23
but also to their learning style and
00:02:25
preferences, thus offering a truly
00:02:28
personalized educational experience.
00:02:33
Newton is a cutting edge platform
00:02:35
that integrates AI to revolutionize
00:02:37
the educational experience.
00:02:40
Its main strength is its ability to
00:02:42
dynamically adjust students learning parts.
00:02:45
Rather than offering a rigid curriculum,
00:02:47
Newton continuously assesses
00:02:49
students performance, behavior,
00:02:51
and interactions with content.
00:02:53
For example, if a student excels in
00:02:55
one area but struggles in another,
00:02:57
the platform reorganizes its modules
00:03:00
to reinforce weak areas while
00:03:02
continuing to stimulate strong areas.
00:03:04
Additionally, Newton uses predictive
00:03:06
analytics to anticipate students
00:03:08
needs, offering them truly personalized
00:03:11
and relevant learning experiences.
00:03:16
Dreambox is not just another math learning
00:03:18
platform. It's an adaptive experience that
00:03:21
reinvents itself with each interaction.
00:03:23
Designed around sophisticated AI, it responds
00:03:26
in real time to students actions.
00:03:29
If a student quickly masters a concept,
00:03:31
Dreambox recognizes it and challenges
00:03:34
them with more complex problems.
00:03:36
If a student appears to struggle,
00:03:38
the platform offers additional
00:03:39
resources and support to clarify
00:03:41
and reinforce understanding.
00:03:43
Teachers and parents also benefit
00:03:45
from detailed dashboards showing
00:03:47
where the student excels and
00:03:49
where they need more support,
00:03:51
thus transforming math teaching into a
00:03:53
collaborative and interactive process.
00:03:58
Smart Sparrow is designed around the
00:04:00
idea that learning is not a one way St.
00:04:02
it's not just about absorbing content
00:04:04
but interacting with it. Using
00:04:06
an AI based approach,
00:04:07
the platform assesses a student's
00:04:09
progress and level of engagement.
00:04:11
For example, if a student spends a lot of
00:04:13
time on a module without progressing,
00:04:16
Smart Sparrow can determine that
00:04:17
they are stuck or disengaged and
00:04:19
adjust the content accordingly.
00:04:21
It might introduce an
00:04:22
interactive activity or a quiz
00:04:24
to rekindle interest or change the
00:04:26
presentation mode of the content to
00:04:28
better suit the students learning style.
00:04:30
Ultimately, Smart Sparrow aims
00:04:31
to make learning more fluid,
00:04:33
interactive and student centered.
00:04:36
The use of AI for personalized
00:04:38
learning begins with a crucial step
00:04:41
collecting data on the student.
00:04:43
It all starts with tests and assessments.
00:04:45
Each quiz, each exam that the student
00:04:48
takes gives us valuable information
00:04:50
about their skills, achievements,
00:04:52
but also their areas of difficulty.
00:04:54
We also gather feedback after
00:04:56
a lesson or module.
00:04:57
We solicit students opinions.
00:04:59
Their feelings,
00:05:00
their suggestions all enrich our database.
00:05:03
And if you think online learning platforms
00:05:05
are just for content, think again.
00:05:07
They capture real time data like the
00:05:09
time a student spends on a lesson,
00:05:11
the exercises they complete,
00:05:13
the videos they watch.
00:05:14
Not to forget the human aspect,
00:05:16
Teachers,
00:05:17
through their classroom observations,
00:05:19
provide valuable data on
00:05:20
students participation and
00:05:22
behavior.
00:05:22
Once all this data is collected,
00:05:25
it is carefully organized and prepared.
00:05:28
This means checking for consistency,
00:05:30
eliminating duplicates and ensuring
00:05:32
everything is ready for our next step.
00:05:34
The next step?
00:05:36
Feeding our artificial intelligence
00:05:38
tool with this data.
00:05:40
This process,
00:05:41
although technical behind the scenes,
00:05:42
is as simple as sending a file for the user.
00:05:45
But the work doesn't stop there.
00:05:47
Data is alive, it evolves.
00:05:50
Therefore, it is crucial to continue updating
00:05:53
our AI tool so that it adapts and refines.
00:05:56
And let's not forget,
00:05:57
throughout this process,
00:05:58
the privacy and security of student
00:06:01
data are our number one priority.
00:06:04
AI in the service of education is above
00:06:06
all an alliance between technology and
00:06:08
humanity to offer the best to each student.
00:06:11
Thanks to AI,
00:06:12
personalization reaches a new level.
00:06:15
It can anticipate students needs
00:06:17
and offer solutions in real time.
00:06:19
However, it heavily depends
00:06:20
on the quality of the data and
00:06:23
still requires human intervention
00:06:24
to ensure excellence. With AI, we
00:06:27
are at the dawn of a new era in education,
00:06:29
combining technology and pedagogy to
00:06:32
offer an unmatched learning experience.

No elements match your search in this video....
Do another search or back to content !

 

00:00:04
Nesta formação, vamos descobrir como
00:00:07
A inteligência artificial está a revolucionar
00:00:09
a criação de conteúdos educativos para
00:00:11
atender às necessidades específicas de cada aluno.
00:00:14
A personalização na educação é
00:00:15
não é apenas uma tendência, é uma necessidade.
00:00:18
Adaptando o conteúdo a cada aluno,
00:00:21
facilitamos a compreensão,
00:00:23
e fortalecer a motivação.
00:00:25
Inteligência artificial,
00:00:26
com a sua capacidade de análise
00:00:28
grandes quantidades de dados,
00:00:30
oferece uma oportunidade única de adaptar
00:00:32
métodos educacionais para cada indivíduo.
00:00:35
No contexto educativo,
00:00:37
A IA depende de uma ampla gama de dados dos alunos para
00:00:40
informar e orientar o seu processo de tomada de decisão.
00:00:43
Esses dados podem incluir desempenhos de teste.
00:00:48
Pontuações, velocidade de resposta e recorrentes
00:00:50
Os erros são analisados em profundidade
00:00:52
estudando as tendências ao longo do tempo.
00:00:54
A IA pode detetar se um aluno está progredindo,
00:00:56
Estagnação ou encontro
00:00:58
dificuldades em determinadas
00:00:59
assuntos ou conceitos. Comentários
00:01:04
feedback, quer seja dado diretamente
00:01:05
pelos estudantes ou pelos seus instrutores,
00:01:07
é uma mina de ouro de informação.
00:01:09
A IA pode usar esses feedbacks para
00:01:11
Entenda os pontos de tropeço, as áreas
00:01:13
de interesse, ou mesmo estudantes
00:01:15
estilos de aprendizagem preferidos.
00:01:17
Interações online, cliques,
00:01:21
tempo gasto numa página,
00:01:22
transferido, recursos,
00:01:23
vídeos assistidos e por quanto tempo
00:01:25
fornecer à IA uma imagem clara
00:01:28
de um envolvimento dos alunos e áreas
00:01:30
que prendem mais a sua atenção.
00:01:32
A partir desta rica mina de informação,
00:01:34
A IA estabelece perfis de aprendizagem.
00:01:36
Se um aluno mostrar forte aptidão em
00:01:39
matemática, mas luta na história,
00:01:41
A IA irá detetá-lo.
00:01:42
Poderia, então, recomendar
00:01:44
recursos na história para colmatar esta lacuna,
00:01:46
ao mesmo tempo que fornece recursos mais avançados
00:01:48
em matemática para continuar a estimular
00:01:50
o interesse do aluno nessa área.
00:01:53
Além disso, se a IA detetar que o
00:01:56
estudante é particularmente engajado
00:01:57
por vídeos em vez de textos,
00:01:59
poderia priorizar recursos de vídeo
00:02:02
nas suas recomendações.
00:02:04
Assim, a IA não apenas identifica
00:02:06
áreas de força e fraqueza, mas também
00:02:09
adapta o formato do conteúdo de acordo com
00:02:10
às preferências dos alunos.
00:02:12
Em última análise, graças a esta análise detalhada,
00:02:15
a inteligência artificial é capaz
00:02:17
para criar ou sugerir
00:02:19
recursos que não são apenas adaptados
00:02:21
ao nível académico do estudante,
00:02:23
mas também ao seu estilo de aprendizagem e
00:02:25
preferências, oferecendo assim uma
00:02:28
experiência educacional personalizada.
00:02:33
Newton é uma plataforma de ponta
00:02:35
que integra IA para revolucionar
00:02:37
a experiência educativa.
00:02:40
A sua principal força é a sua capacidade de
00:02:42
ajustar dinamicamente as partes de aprendizagem dos alunos.
00:02:45
Em vez de oferecer um currículo rígido,
00:02:47
Newton avalia continuamente
00:02:49
desempenho dos alunos, comportamento,
00:02:51
e interações com conteúdo.
00:02:53
Por exemplo, se um aluno se destacar em
00:02:55
numa área, mas lutas noutra,
00:02:57
A plataforma reorganiza os seus módulos
00:03:00
reforçar as zonas débeis, ao mesmo tempo que
00:03:02
continuar a estimular áreas fortes.
00:03:04
Além disso, Newton usa preditivos
00:03:06
Analytics para antecipar os alunos
00:03:08
necessidades, oferecendo-lhes verdadeiramente personalizado
00:03:11
e experiências de aprendizagem relevantes.
00:03:16
Dreambox não é apenas mais um aprendizado de matemática
00:03:18
plataforma. É uma experiência adaptativa que
00:03:21
reinventa-se a cada interação.
00:03:23
Projetado em torno de IA sofisticada, ele responde
00:03:26
em tempo real para as ações dos alunos.
00:03:29
Se um aluno domina rapidamente um conceito,
00:03:31
A Dreambox reconhece-o e desafia-o
00:03:34
com problemas mais complexos.
00:03:36
Se um estudante parece ter dificuldades,
00:03:38
A plataforma oferece
00:03:39
Recursos e apoio para clarificar
00:03:41
e reforçar a compreensão.
00:03:43
Professores e pais também são beneficiados
00:03:45
a partir de painéis detalhados mostrando
00:03:47
onde o aluno se destaca e
00:03:49
onde necessitam de mais apoio,
00:03:51
transformando, assim, o ensino da matemática num
00:03:53
processo colaborativo e interativo.
00:03:58
O Pardal Inteligente foi concebido em torno da
00:04:00
ideia de que aprender não é um sentido único St.
00:04:02
não se trata apenas de absorver conteúdo
00:04:04
mas interagindo com ele. Utilização
00:04:06
uma abordagem baseada na IA,
00:04:07
A plataforma avalia a
00:04:09
progresso e nível de envolvimento.
00:04:11
Por exemplo, se um aluno gasta muito
00:04:13
tempo num módulo sem progredir,
00:04:16
O Smart Sparrow pode determinar isso
00:04:17
estão presos ou desligados e
00:04:19
Ajuste o conteúdo em conformidade.
00:04:21
Pode introduzir um
00:04:22
atividade interativa ou um questionário
00:04:24
para reavivar o interesse ou alterar o
00:04:26
modo de apresentação do conteúdo para
00:04:28
melhor se adequar ao estilo de aprendizagem dos alunos.
00:04:30
Em última análise, Smart Sparrow visa
00:04:31
tornar a aprendizagem mais fluida,
00:04:33
interativo e centrado no aluno.
00:04:36
O uso da IA para personalização
00:04:38
A aprendizagem começa com um passo crucial
00:04:41
recolha de dados sobre o aluno.
00:04:43
Tudo começa com testes e avaliações.
00:04:45
Cada quiz, cada exame que o aluno
00:04:48
takes dá-nos informação valiosa
00:04:50
sobre as suas competências, realizações,
00:04:52
mas também as suas áreas de dificuldade.
00:04:54
Também recolhemos feedback após
00:04:56
uma lição ou módulo.
00:04:57
Solicitamos a opinião dos alunos.
00:04:59
Seus sentimentos,
00:05:00
todas as suas sugestões enriquecem a nossa base de dados.
00:05:03
E se pensa em plataformas de aprendizagem online
00:05:05
são apenas para conteúdo, pense novamente.
00:05:07
Eles capturam dados em tempo real, como o
00:05:09
tempo que um aluno gasta numa aula,
00:05:11
os exercícios que completam,
00:05:13
os vídeos que assistem.
00:05:14
Sem esquecer o aspeto humano,
00:05:16
Professores,
00:05:17
através das suas observações em sala de aula,
00:05:19
fornecer dados valiosos sobre
00:05:20
participação dos estudantes e
00:05:22
comportamento.
00:05:22
Uma vez recolhidos todos estes dados,
00:05:25
é cuidadosamente organizado e preparado.
00:05:28
Isto significa verificar a coerência,
00:05:30
eliminando duplicatas e garantindo
00:05:32
Tudo está pronto para o nosso próximo passo.
00:05:34
O próximo passo?
00:05:36
Alimentar a nossa inteligência artificial
00:05:38
com estes dados.
00:05:40
Este processo,
00:05:41
Embora técnico nos bastidores,
00:05:42
é tão simples como enviar um ficheiro para o utilizador.
00:05:45
Mas o trabalho não para por aí.
00:05:47
Os dados estão vivos, evoluem.
00:05:50
Por conseguinte, é fundamental continuar a atualizar
00:05:53
a nossa ferramenta de IA para que se adapte e refine.
00:05:56
E não nos esqueçamos,
00:05:57
Ao longo de todo este processo,
00:05:58
a privacidade e segurança do estudante
00:06:01
Os dados são a nossa prioridade número um.
00:06:04
A IA ao serviço da educação está acima
00:06:06
toda uma aliança entre tecnologia e
00:06:08
humanidade para oferecer o melhor a cada aluno.
00:06:11
Graças à IA,
00:06:12
A personalização atinge um novo nível.
00:06:15
Pode antecipar as necessidades dos alunos
00:06:17
e oferecer soluções em tempo real.
00:06:19
No entanto, depende fortemente
00:06:20
sobre a qualidade dos dados e
00:06:23
ainda requer intervenção humana
00:06:24
para garantir a excelência. Com a IA, nós
00:06:27
estão no alvorecer de uma nova era na educação,
00:06:29
combinando tecnologia e pedagogia para
00:06:32
oferecer uma experiência de aprendizagem incomparável.

No elements match your search in this video....
Do another search or back to content !

 

00:00:04
In questo corso scopriremo come
00:00:07
l'intelligenza artificiale sta rivoluzionando
00:00:09
la creazione di contenuti didattici per
00:00:11
soddisfare le esigenze specifiche di ogni studente.
00:00:14
La personalizzazione nell'istruzione è
00:00:15
non è solo una tendenza, è una necessità.
00:00:18
Personalizzando i contenuti per ogni studente,
00:00:21
facilitiamo la comprensione,
00:00:23
coinvolgimento e rafforziamo la motivazione.
00:00:25
Intelligenza artificiale,
00:00:26
con la sua capacità di analisi
00:00:28
grandi quantità di dati,
00:00:30
offre un'opportunità unica di personalizzazione
00:00:32
metodi educativi per ogni individuo.
00:00:35
Nel contesto educativo,
00:00:37
L'intelligenza artificiale si basa su un'ampia gamma di dati degli studenti per
00:00:40
informare e guidare il suo processo decisionale.
00:00:43
Questi dati possono includere le prestazioni dei test.
00:00:48
Punteggi, velocità di risposta e ricorrenza
00:00:50
gli errori vengono analizzati in modo approfondito
00:00:52
studiando le tendenze nel tempo.
00:00:54
L'intelligenza artificiale è in grado di rilevare se uno studente sta progredendo,
00:00:56
stagnante o in fase di incontro
00:00:58
difficoltà in alcuni
00:00:59
soggetti o concetti. Feedback
00:01:04
feedback, se fornito direttamente
00:01:05
dagli studenti o dai loro istruttori,
00:01:07
è una miniera d'oro di informazioni.
00:01:09
L'intelligenza artificiale può utilizzare questi feedback per
00:01:11
comprendere i punti di inciampo, le aree
00:01:13
di interesse, o anche studenti
00:01:15
stili di apprendimento preferiti.
00:01:17
Interazioni online, clic,
00:01:21
tempo trascorso su una pagina,
00:01:22
risorse scaricate,
00:01:23
video guardati e per quanto tempo
00:01:25
fornire all'IA un'immagine chiara
00:01:28
del coinvolgimento e delle aree degli studenti
00:01:30
che attirano maggiormente la loro attenzione.
00:01:32
Da questa ricca miniera di informazioni,
00:01:34
L'IA stabilisce profili di apprendimento.
00:01:36
Se uno studente mostra una forte attitudine a
00:01:39
matematica ma difficoltà nella storia,
00:01:41
L'IA lo rileverà.
00:01:42
Potrebbe quindi consigliare ulteriori
00:01:44
risorse storiche per colmare questa lacuna,
00:01:46
fornendo al contempo risorse più avanzate
00:01:48
in matematica per continuare a stimolare
00:01:50
l'interesse dello studente per quell'area.
00:01:53
Inoltre, se l'IA rileva che
00:01:56
lo studente è particolarmente impegnato
00:01:57
tramite video anziché testi,
00:01:59
potrebbe dare priorità alle risorse video
00:02:02
nelle sue raccomandazioni.
00:02:04
Pertanto, l'IA non solo identifica
00:02:06
aree di forza e di debolezza, ma anche
00:02:09
adatta il formato dei contenuti in base
00:02:10
alle preferenze degli studenti.
00:02:12
In definitiva, grazie a questa analisi dettagliata,
00:02:15
l'intelligenza artificiale è in grado
00:02:17
creare o suggerire contenuti didattici
00:02:19
risorse non solo personalizzate
00:02:21
al livello accademico dello studente,
00:02:23
ma anche al loro stile di apprendimento e
00:02:25
preferenze, offrendo così un vero
00:02:28
esperienza educativa personalizzata.
00:02:33
Newton è una piattaforma all'avanguardia
00:02:35
che integra l'IA per rivoluzionare
00:02:37
l'esperienza educativa.
00:02:40
Il suo principale punto di forza è la capacità di
00:02:42
adeguare dinamicamente le parti di apprendimento degli studenti.
00:02:45
Piuttosto che offrire un curriculum rigido,
00:02:47
Newton valuta continuamente
00:02:49
rendimento, comportamento degli studenti,
00:02:51
e interazioni con i contenuti.
00:02:53
Ad esempio, se uno studente eccelle in
00:02:55
in un'area ma lotta in un'altra,
00:02:57
la piattaforma riorganizza i suoi moduli
00:03:00
per rinforzare le aree deboli mentre
00:03:02
continuando a stimolare le aree forti.
00:03:04
Inoltre, Newton utilizza la predittiva
00:03:06
analisi per anticipare gli studenti
00:03:08
esigenze, offrendole davvero personalizzate
00:03:11
ed esperienze di apprendimento pertinenti.
00:03:16
Dreambox non è solo un altro apprendimento della matematica
00:03:18
piattaforma. È un'esperienza adattiva che
00:03:21
si reinventa ad ogni interazione.
00:03:23
Progettato sulla base di un'intelligenza artificiale sofisticata, risponde
00:03:26
in tempo reale alle azioni degli studenti.
00:03:29
Se uno studente padroneggia rapidamente un concetto,
00:03:31
Dreambox lo riconosce e sfida
00:03:34
loro con problemi più complessi.
00:03:36
Se uno studente sembra avere difficoltà,
00:03:38
la piattaforma offre ulteriori
00:03:39
risorse e supporto per chiarire
00:03:41
e rafforzare la comprensione.
00:03:43
Ne traggono beneficio anche insegnanti e genitori
00:03:45
da dashboard dettagliate che mostrano
00:03:47
dove lo studente eccelle e
00:03:49
dove hanno bisogno di maggiore supporto,
00:03:51
trasformando così l'insegnamento della matematica in un
00:03:53
processo collaborativo e interattivo.
00:03:58
Smart Sparrow è progettato attorno a
00:04:00
idea che l'apprendimento non sia un percorso a senso unico
00:04:02
non si tratta solo di assorbire contenuti
00:04:04
ma interagendo con esso. Usando
00:04:06
un approccio basato sull'intelligenza artificiale,
00:04:07
la piattaforma valuta quello di uno studente
00:04:09
progressi e livello di coinvolgimento.
00:04:11
Ad esempio, se uno studente spende molto
00:04:13
tempo trascorso su un modulo senza progredire,
00:04:16
Smart Sparrow può determinarlo
00:04:17
sono bloccate o disimpegnate e
00:04:19
aggiusta il contenuto di conseguenza.
00:04:21
Potrebbe introdurre un
00:04:22
un'attività interattiva o un quiz
00:04:24
per riaccendere l'interesse o modificare il
00:04:26
modalità di presentazione del contenuto a
00:04:28
si adattano meglio allo stile di apprendimento degli studenti.
00:04:30
In definitiva, Smart Sparrow mira
00:04:31
per rendere l'apprendimento più fluido,
00:04:33
interattivo e incentrato sullo studente.
00:04:36
L'uso dell'IA per la personalizzazione
00:04:38
l'apprendimento inizia con un passaggio cruciale
00:04:41
raccolta di dati sullo studente.
00:04:43
Tutto inizia con test e valutazioni.
00:04:45
Ogni quiz, ogni esame proposto dallo studente
00:04:48
takes ci fornisce informazioni preziose
00:04:50
sulle loro capacità, sui loro risultati,
00:04:52
ma anche le loro aree di difficoltà.
00:04:54
Raccogliamo feedback anche dopo
00:04:56
una lezione o un modulo.
00:04:57
Richiediamo l'opinione degli studenti.
00:04:59
I loro sentimenti,
00:05:00
i loro suggerimenti arricchiscono tutti il nostro database.
00:05:03
E se pensi alle piattaforme di apprendimento online
00:05:05
sono solo per i contenuti, ripensaci.
00:05:07
Catturano dati in tempo reale come
00:05:09
tempo che uno studente dedica a una lezione,
00:05:11
gli esercizi che completano,
00:05:13
i video che guardano.
00:05:14
Per non dimenticare l'aspetto umano,
00:05:16
Insegnanti,
00:05:17
attraverso le loro osservazioni in classe,
00:05:19
fornire dati preziosi su
00:05:20
partecipazione degli studenti e
00:05:22
comportamento.
00:05:22
Una volta raccolti tutti questi dati,
00:05:25
è organizzato e preparato con cura.
00:05:28
Ciò significa verificare la coerenza,
00:05:30
eliminare i duplicati e garantire
00:05:32
tutto è pronto per il nostro prossimo passo.
00:05:34
Il passo successivo?
00:05:36
Alimentare la nostra intelligenza artificiale
00:05:38
strumento con questi dati.
00:05:40
Questo processo,
00:05:41
sebbene tecnico dietro le quinte,
00:05:42
è semplice come inviare un file per l'utente.
00:05:45
Ma il lavoro non si ferma qui.
00:05:47
I dati sono vivi, si evolvono.
00:05:50
Pertanto, è fondamentale continuare l'aggiornamento
00:05:53
il nostro strumento di intelligenza artificiale in modo che si adatti e si perfezioni.
00:05:56
E non dimentichiamo,
00:05:57
durante tutto questo processo,
00:05:58
la privacy e la sicurezza dello studente
00:06:01
i dati sono la nostra priorità numero uno.
00:06:04
L'intelligenza artificiale al servizio dell'istruzione è al primo posto
00:06:06
tutta un'alleanza tra tecnologia e
00:06:08
umanità per offrire il meglio a ogni studente.
00:06:11
Grazie all'intelligenza artificiale,
00:06:12
la personalizzazione raggiunge un nuovo livello.
00:06:15
Può anticipare le esigenze degli studenti
00:06:17
e offrire soluzioni in tempo reale.
00:06:19
Tuttavia, dipende in larga misura
00:06:20
sulla qualità dei dati e
00:06:23
richiede ancora l'intervento umano
00:06:24
per garantire l'eccellenza. Con l'IA, noi
00:06:27
siamo all'alba di una nuova era nell'istruzione,
00:06:29
combinando tecnologia e pedagogia per
00:06:32
offrire un'esperienza di apprendimento senza pari.

No elements match your search in this video....
Do another search or back to content !

 

00:00:04
На этом тренинге мы узнаем, как
00:00:07
искусственный интеллект революционизирует
00:00:09
создание образовательного контента для
00:00:11
удовлетворить конкретные потребности каждого учащегося.
00:00:14
Персонализация в образовании — это
00:00:15
это не просто тренд, а необходимость.
00:00:18
Адаптируя контент для каждого ученика,
00:00:21
мы способствуем пониманию,
00:00:23
вовлеченность и усиливаем мотивацию.
00:00:25
Искусственный интеллект,
00:00:26
с его способностью анализировать
00:00:28
огромные объемы данных,
00:00:30
предоставляет уникальную возможность адаптировать
00:00:32
методы обучения для каждого человека.
00:00:35
В образовательном контексте
00:00:37
Искусственный интеллект использует широкий спектр данных учащихся для
00:00:40
информирует и направляет процесс принятия решений.
00:00:43
Эти данные могут включать результаты тестов.
00:00:48
Результаты, скорость ответа и количество повторяющихся ответов
00:00:50
ошибки детально анализируются
00:00:52
путем изучения тенденций с течением времени.
00:00:54
Искусственный интеллект может определить, успевает ли ученик,
00:00:56
стагнация или стагнация
00:00:58
трудности в определенных
00:00:59
предметы или концепции. Отзывы
00:01:04
отзывы, независимо от того, были ли они предоставлены напрямую
00:01:05
от студентов или их преподавателей,
00:01:07
это золотой кладезь информации.
00:01:09
Искусственный интеллект может использовать эти отзывы для
00:01:11
понять точки преткновения, области
00:01:13
представляющие интерес или даже студенты
00:01:15
предпочтительные стили обучения.
00:01:17
Онлайн-взаимодействие, клики,
00:01:21
время, проведенное на странице,
00:01:22
загруженные файлы, ресурсы,
00:01:23
просмотренные видео и как долго
00:01:25
предоставьте искусственному интеллекту четкую картину
00:01:28
вовлеченности студентов и областей
00:01:30
которые привлекают их внимание больше всего.
00:01:32
Судя по этому богатому массиву информации,
00:01:34
Искусственный интеллект создает учебные профили.
00:01:36
Если учащийся проявляет сильные способности к
00:01:39
математика, но с трудом справляется с историческими трудностями,
00:01:41
Искусственный интеллект это обнаружит.
00:01:42
Затем он может порекомендовать дополнительные
00:01:44
исторические ресурсы для преодоления этого разрыва,
00:01:46
предоставляя при этом более современные ресурсы
00:01:48
в математике, чтобы продолжать стимулировать
00:01:50
интерес студента к этой области.
00:01:53
Более того, если искусственный интеллект обнаружит, что
00:01:56
студент особенно увлечен
00:01:57
с помощью видео, а не текстов, это
00:01:59
может приоритизировать видеоресурсы
00:02:02
в своих рекомендациях.
00:02:04
Таким образом, искусственный интеллект не только идентифицирует
00:02:06
сильные и слабые стороны, но
00:02:09
адаптирует формат контента в соответствии с
00:02:10
в соответствии с предпочтениями учащихся.
00:02:12
В конечном итоге, благодаря этому подробному анализу,
00:02:15
искусственный интеллект способен
00:02:17
создавать или предлагать образовательные
00:02:19
ресурсы, которые не только адаптированы
00:02:21
к академическому уровню студента,
00:02:23
но также к их стилю обучения и
00:02:25
предпочтения, предлагая, таким образом, действительно
00:02:28
персонализированный образовательный опыт.
00:02:33
Newton — это передовая платформа
00:02:35
которая объединяет искусственный интеллект и революционизирует
00:02:37
образовательный опыт.
00:02:40
Его главная сила — это способность
00:02:42
динамически корректировать учебные части учащихся.
00:02:45
Вместо того чтобы предлагать жесткую учебную программу,
00:02:47
Ньютон постоянно оценивает
00:02:49
успеваемость, поведение учащихся,
00:02:51
и взаимодействие с контентом.
00:02:53
Например, если ученик преуспевает в
00:02:55
в одной области, но испытывает трудности в другой,
00:02:57
платформа реорганизует свои модули
00:03:00
для усиления слабых мест, в то время как
00:03:02
продолжая стимулировать сильные районы.
00:03:04
Кроме того, Ньютон использует прогнозирование
00:03:06
аналитика для прогнозирования учащихся
00:03:08
потребности, предлагая им по-настоящему персонализированные
00:03:11
и соответствующий учебный опыт.
00:03:16
Dreambox — это не просто еще одно обучение математике
00:03:18
платформа. Это адаптивный опыт, который
00:03:21
С каждым взаимодействием он изобретает себя заново.
00:03:23
Разработанный на основе сложного искусственного интеллекта, он реагирует
00:03:26
в режиме реального времени на действия учащихся.
00:03:29
Если студент быстро освоит концепцию,
00:03:31
Dreambox осознает это и бросает вызов
00:03:34
им приходится сталкиваться с более сложными проблемами.
00:03:36
Если кажется, что ученик испытывает трудности,
00:03:38
платформа предлагает дополнительные
00:03:39
ресурсы и поддержка для уточнения
00:03:41
и укрепить взаимопонимание.
00:03:43
Учителя и родители также выигрывают
00:03:45
из подробных информационных панелей, показывающих
00:03:47
где ученик преуспевает и
00:03:49
где им нужна дополнительная поддержка,
00:03:51
тем самым превращая преподавание математики в
00:03:53
совместный и интерактивный процесс.
00:03:58
Умный воробей создан на основе
00:04:00
идея о том, что обучение — это не односторонний способ, St.
00:04:02
дело не только в усвоении контента
00:04:04
но и взаимодействие с ним. Использование
00:04:06
подход, основанный на искусственном интеллекте,
00:04:07
платформа оценивает успеваемость учащегося
00:04:09
прогресс и уровень вовлеченности.
00:04:11
Например, если студент тратит много
00:04:13
время на модуле без прогресса,
00:04:16
Умный воробей может это определить
00:04:17
они застряли или отключены и
00:04:19
соответствующим образом отрегулируйте содержимое.
00:04:21
Это может ввести
00:04:22
интерактивное занятие или викторина
00:04:24
чтобы возродить интерес или изменить
00:04:26
режим презентации контента на
00:04:28
лучше соответствовать стилю обучения учащихся.
00:04:30
В конечном счете, Smart Sparrow ставит перед собой цели
00:04:31
сделать обучение более плавным,
00:04:33
интерактивный и ориентированный на учащихся.
00:04:36
Использование искусственного интеллекта для персонализации
00:04:38
обучение начинается с важного шага
00:04:41
сбор данных об ученике.
00:04:43
Все начинается с тестов и оценок.
00:04:45
Каждая викторина, каждый экзамен, который проводит студент
00:04:48
сдает нам ценную информацию
00:04:50
об их навыках, достижениях,
00:04:52
но также и в трудных областях.
00:04:54
Мы также собираем отзывы после
00:04:56
урок или модуль.
00:04:57
Мы запрашиваем мнения учащихся.
00:04:59
Их чувства,
00:05:00
Все их предложения обогащают нашу базу данных.
00:05:03
А если вы думаете, платформы для онлайн-обучения
00:05:05
предназначены только для контента, подумайте еще раз.
00:05:07
Они собирают данные в реальном времени, такие как
00:05:09
время, которое ученик проводит на уроке,
00:05:11
выполняемые им упражнения,
00:05:13
видео, которые они смотрят.
00:05:14
Не стоит забывать о человеческом аспекте,
00:05:16
Учителя,
00:05:17
благодаря наблюдениям в классе,
00:05:19
предоставить ценные данные о
00:05:20
участие студентов и
00:05:22
поведение.
00:05:22
Как только все эти данные будут собраны,
00:05:25
они тщательно организованы и подготовлены.
00:05:28
Это означает проверку согласованности,
00:05:30
устранение дубликатов и обеспечение
00:05:32
все готово для нашего следующего шага.
00:05:34
Следующий шаг?
00:05:36
Подпитываем наш искусственный интеллект
00:05:38
инструмент с этими данными.
00:05:40
Этот процесс,
00:05:41
хотя он и носит технический характер,
00:05:42
это так же просто, как отправить файл пользователю.
00:05:45
Но на этом работа не заканчивается.
00:05:47
Данные живы, они эволюционируют.
00:05:50
Поэтому крайне важно продолжать обновление
00:05:53
наш инструмент искусственного интеллекта, который адаптируется и совершенствуется.
00:05:56
И давайте не будем забывать,
00:05:57
на протяжении всего этого процесса
00:05:58
конфиденциальность и безопасность учащегося
00:06:01
данные — наш приоритет номер один.
00:06:04
Искусственный интеллект на службе образования превыше всего
00:06:06
все это альянс между технологиями и
00:06:08
человечество предлагает лучшее каждому студенту.
00:06:11
Благодаря искусственному интеллекту,
00:06:12
персонализация выходит на новый уровень.
00:06:15
Она может предвидеть потребности учащихся
00:06:17
и предлагать решения в режиме реального времени.
00:06:19
Однако это во многом зависит
00:06:20
от качества данных и
00:06:23
все еще требует вмешательства человека
00:06:24
для обеспечения превосходства. Благодаря искусственному интеллекту мы
00:06:27
находимся на пороге новой эры в образовании,
00:06:29
сочетая технологии и педагогику для
00:06:32
предложить непревзойденный опыт обучения.

No elements match your search in this video....
Do another search or back to content !

 

Mandarine AI: CE QUI POURRAIT VOUS INTÉRESSER

Reminder

Show